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ABSTRACT 

An externally pressurized spherical gas journal bearing, 

which has multiple spherically surfaced pads, was designed 

and fabricated for use as a three degree-of-freedom pivot 

which will support large loads (100 lbs).  This inherently 

compensated pool type bearing design proved to be pneumatically 

unstable.  The problem then was to determine a restrictor 

configuration for this bearing which would insure pneu- 

matic stability and a large load carrying capacity.  Restrictor 

configurations investigated were inherent compensating both . 

with and without a pool and orifice compensating without a 

pool. 

The Reynolds equation and the equations for the 

distributed film velocities are developed in the report 

for spherical coordinates. Using these equations, theoretical 

estimates of bearing pad static characteristics (load 

carrying capacity, stiffness, etc.) were obtained for the 

above listed restrictor configurations.  The problem of 

pneumatic instability was investigated using information 

available in the literature.  The operating conditions of 

the bearing are such that the theoretical predictions are 

subject to question.  A model bearing, which duplicates the 

lubricating film of a journal bearing pad, was, therefore, 

constructed in order to obtain experimental data to verify 

the theoretical predictions. 

For this particular bearing configuration operating 

at large supply pressures (800 psig), it was found that an 

inherent compensating restrictor without a pool will ensure 

pneumatic stability and maximum load carrying capacity. 

This result is in agreement with theoretical predictions 

of dynamic behavior and is in disagreement with theoretical 

predictions of load carrying capacity. 
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NOMENCLATURE 

2 
A    Area, in. 

B     Bearing parameter (Equation 20) 

C     Normalized constant radial clearance (film thick- 

ness), c/h 

C,    Discharge coefficient 

2    2 o c    Specific heat at constant pressure, in. /sec. - Ft 

c    Constant radial clearance (film thickness), in. 

d     Orifice diameter for inherent compensation; secondary 

pool diameter for orifice compensation, in. 

dÄ    Orifice diameter, in. o 

G Eccentricity function, sin 9(1 - e cos 9) 

H Normalized radial clearance (film thickness), h/h 

h Radial clearance (film thickness), in. 

I Variable (Equation 33) 

K     Constant 

2 /  4 KA,Kp. Constants, lb. /in. 

K„    Knudsen number, \/h n 

k Thermal conductivity, lb.-sec./ R 

L,LD Constants 

Lg Radial surface line length of arc, in. 

M Mach number 

m Mass flow, lb. sec. /in.-sec. 

P Normalized pressure, p/p« 
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2 
p Pressure, lb./in* 

R Bearing pad radii, in. 
* — 2 Re Modified film Reynolds number, puh /LQH- 

O On 
ft Gas constant, in. /sec. - R 

r Spherical coordinate radius {rfl + z), in. 

rR Radius of model bearing ball, in. 

5 Normalized film stiffness, sh /Tr(rß sin A) p2 

s Film stiffness lb./in. 

T Temperature, °R 

T Normalized time, cot 

t Time,   sec. 

U Normalized velocity in the 6-direction, uv/vr 

u Velocity in the 9-direction, in./sec. 

V Normalized velocity in the (p-direction, vn/
v
r 

v Velocity in the co-direction, in./sec. 

W Normalized bearing load carrying capacity, 

w/Trr|(sin 9)2p2 

w Bearing load carrying capacity, lb. 

w' Velocity in the r-direction, in./sec. 

z Distance measured in the r-direction from the surface 

of the ball (0 < z 4,  h), in. 

T Normalized density, p/p« 

Y Ratio of specific heats 

6 Pool depth, in. 

6 Secondary pool depth, in. 



e Eccentricity ratio, 1-h/c 

£ Variable (Equation 35) 

8 Normalized bearing coordinate, 9/62 

9 Spherical coordinate, rad. 

A Compressibility  number,   b\i~Tv/hp2 

\ Mean free  molecular path,   in. 
o 

|JL     Absolute viscostiy, lb.-sec./in. 
2 .  4 

p     Density, lb., sec. /in. 

2  2 
ö     Squeeze number, 12)0^ fü/nrPo 

T     Tangent ratio, tan (0/2)/tan (82/2) 

Q     Normalized viscosity, jx/p.^ 

cp     Spherical coordinate, rad. 

o>     Reference circular frequency, rad./sec. 

( )   Average value 

( )   First derivative with respect to time 

Subscripts 

c     Critical flow conditions; i.e., conditions at which 

the restrictor flow is sonic 

F     Film conditions 

h     Condition at z = h 

M     Maximum conditions 

R     Restrictor conditions 

r     Reference conditions 

S     Supply conditions 

XI 



1 Conditions at the entrance to the bearing film 

2 Conditions at the bearing film exit (ambient) 
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CHAPTER I 

INTRODUCTION 

I.  BACKGROUND INFORMATION 

In recent times a demand has arisen for the develop- 

ment of multi-degree-of-freedom methods for evaluating the 

rigid body dynamics of model aerodynamic configurations in 

wind tunnels.  In answer to this demand, a three degree-of- 

freedom captive model dynamic stability balance was devel- 

oped.  The pivot of this balance, a spherical gas journal 

bearing, is the subject of this thesis.  Gas bearings are 

desirable for this application due to their extremely low 

friction (l) .  As shown in Figure 1, this gas bearing con- 

sists mainly of an outer movable bearing housing to which 

models are attached, and an inner fixed bearing core through 

which gas is supplied to the bearing surfaces.  The inner 

core has machined on it four spherically surfaced pads 

arranged in a manner which allows the journal bearing to 

both resist loads in any radial direction and center itself. 

One pad faces forward and the remaining three pads are 

located 120 degrees apart each being located 109.5 degrees 

Numbers in parentheses refer to similarly numbered 
references in the bibliography. 
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Model Mounting Surface - 

Bearing Pads 

c -0.0015 

Plenum 
d-0.030 

Bumper 
This Pad Has Been Rotated 
60 deg. into View for Clarity 

Orifice 
(Flow Restrlctor) 

Note All Dimensions in Inches 

Pad Detail 

Figure 1.  Journal bearing. 



from the forward facing pad. The bearing allows unlimited 

angular freedom about its axis of symmetry and ±10 degrees 

of angular freedom about any transverse axis through its 

center. All of these capabilities are necessary for its 

application. 

Gas flows under pressure from the plenum through each 

orifice (flow restrictor) then radially outward along the 

surface of each pad through the clearance between the bear- 

ing core outer diameter and the bearing housing inner 

diameter. The resistance to gas flow through the thin 

clearance over each pad produces a pressure gradient which 

results in a force in the gas film which acts to keep the 

bearing core and housing separated. As the clearance (film 

thickness) decreases the resistance to flow increases thus 

decreasing the mass flow and consequently the pressure drop 

across the flow restrictor.  Since the pressure drop across 

the restrictor decreases with decreasing mass flow, the 

force generated in the gas film increases with decreasing 

clearance. This effect, known as compensation, will be dis- 

cussed later in Chapter III.  The type of compensation is 

denoted by the type of flow restrictor. 

II.  STATEMENT OF THE PROBLEM 

Unfortunately this gas bearing proved to be pneu- 

matically unstable (see page 79). The task of determining 



the modifications necessary to make it operable was assigned 

to the author.  It was decided that the only practical modi- 

fication that could be made to this bearing, without com- 

pletely machining the bearing surfaces, would be to change 

the restrictor configuration.  A restrictor configuration 

was sought which would provide both high load capacity and 

stiffness while insuring pneumatic stability.  A secondary 

consideration in the choice of a restrictor configuration 

would be to obtain a low value of the mass flow.  The bear- 

ing restrictor was to be designed for the use of nitrogen 

since a high pressure dry nitrogen supply system exists in 

the facility where this bearing will be used.  The methods 

used in determining the restrictor configuration, and the 

information obtained in this effort form the subject matter 

of this thesis. 

The geometry of this bearing makes it very difficult 

to analyze using existing theoretical analyses like those 

developed by Pan (2).  A method was sought which could be 

more easily applied.  In the axial direction (along the axis 

of symmetry) the journal bearing can be approximated as one 

consisting of two identical spherically surfaced pads 

horizontally opposed. Although this simplified theoretical 

model cannot be used to determine the maximum journal bear- 

ing load capacity in any radial direction, it does allow the 

use of single pad load capacity versus radial clearance 



characteristic curves in evaluating the relative load capac- 

ity and stiffness produced by different journal bearing 

restrictor configurations0 

In order to develop the pad characteristics for use 

with this modelf   and to gain a more thorough understanding 

of gas lubrication theory, a basic theoretical study was 

performed.  Using methods similar to those which Gross (3) 

used to develop the gas lubrication equations in cartesian 

coordinates, equations for the distributed film velocities 

and the isothermal Reynolds equation were developed in 

spherical coordinates {Appendix A).  From these a set of 

equations was developed which describe the static character- 

istics of spherically surfaced bearing pads (Chapter III). 

Existing theoretical analyses were used to evaluate the 

problem of pneumatic instability. 

As a result of the small pad sizes, and the elevated 

operating pressures necessary to gain load carrying capacity, 

the validity of the viscous isothermal theoretical predic- 

tions was questioned. An experimental investigation was 

therefore conducted using a model representative of one 

bearing pad to obtain data for comparison with theoretical 

predictions. 



CHAPTER II 

APPARATUS 

I.  MODEL BEARING 

The purpose for fabricating the model bearing shown 

in Figure 2 was to obtain a simple means by which an experi- 

mental evaluation could be made of the performance of 

restrictor configurations proposed for the journal bearing 

pads. The model bearing was designed such that its lubricat- 

ing film will be a duplicate of the film geometry over a 

journal bearing pad.  The model bearing pad is concave while 

the journal bearing pads are convex and the pools are shaped 

differently; however,' these differences should have a 

negligible effect on the relative performance.  Both the pad 

diameter and pool diameter (Figure 2) of this spherical pad 

bearing are identical to those of the journal bearing 

(Figure 1, page 2).  The spherical surface of this pad was 

obtained by lapping a 2.875 inch diameter hardened chrome 

alloy precision steel sphere into it.  This method of con- 

struction caused the constant radial clearance of the model 

to be smaller than that of the journal bearing.  The constant 

radial clearance of the model bearing was determined to be 

approximately 0.0005 inches.  This is approximately one 

third the constant radial clearance of the journal bearing 



$2 ' arcsin (R^rg) 

5 ■ Dt 8j ■ arcsin (d/2rB) 

6 > 0, 8j ■ arcsin (R^rg) 

2.875-d!am. Ball 

0.750 Pool Warn. 
-2Rlf 6> 0 

Detail A 
Seal Pressure 
Supply Port 

V7777^ 
Support Arm 

Bearing Case 

Bearing Pressure 
Supply Port 

Note:  All Dimensions in Inches 

Figure 2. Model bearing. 



pads; therefore, at clearances where the model bearing is 

operating near zero eccentricity, the journal bearing will 

be operating at large eccentricities. 

The model bearing pool volume can be varied from zero 

to an excess of the clearance volume by a movable core which 

is positioned through the use of shims. An undesirable con- 

sequence of making this core movable is the volume which 

results from the difference in the core outer diameter and 

the bearing case inner diameter.  This increases the pool 

volume which increases the chance of pneumatic instability. 

In an effort to minimize this volume, the bearing was 

designed with the following features: 

1. The diametrical clearance between the two parts 

was held below 0.0003 inches. 

2. An "0"-ring seal was placed as close to the 

bearing surface as possible. 

3. Seal pressure was applied to force the "0"-ring 

into the upper portion of its grove. 

The model bearing was designed to operate at seal 

pressures and gas supply pressures up to 1000 psia.  Gas is 

supplied to the bearing clearance through an orifice located 

in the hollow core.  Orifice sizes and configurations were 

changed by modifying the core section. 



II.  CALIBRATION APPARATUS 

The experimental apparatus, shown schematically in 

Figure 3, is designed so that loads can be applied to the 

model bearing along its axis of symmetry and the resulting 

axial deflections determined.  This apparatus consists of 

the model bearing, a load bracket, calibration weights, and 

a dial indicator with its support. 

The load 'bracket consists of two flat circular disks 

connected by three metal columns.  The top disk has a cir- 

cular opening in it which is contoured to fit the ball and 

allows the ball to protrude through it.  The bottom disk has 

a hook located at its center from which the calibration 

weights are suspended.  This allows the load vector of the 

calibration weights to lie approximately along the bearing 

axis of symmetry. 

The dial indicator is aligned to read deflections 

along the bearing axis of symmetry.  It reads off that por- 

tion of the ball which protrudes through the upper load 

bracket disk.  The dial indicator support is attached to the 

bearing case to insure accuracy in the deflection measure- 

ments . 



Load Bracket 

Model 
Bearing 

Flex Cable 

Top View 

Dial Indicator 

Indicator 
Support 

Weights 

Figure 3.  Calibration apparatus. 
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CHAPTER III 

THEORETICAL ANALYSIS AND DISCUSSION 

This chapter will be used to develop the relations 

which are fundamental in the design of a hydrostatic spheri- 

cal bearing pad of the type shown in Figure 2, page 7.  It 

will be assumed that the bearing surfaces remain concentric 

and that there is no relative motion between them.  These 

conditions eliminate the pressure gradient in the cp direc- 

tion; therefore, the equations given in Appendix A for the 

velocity distribution in the viscous film (Equations A-10 

and A-11) reduce to 

1   dp  r    T 
u = z|z - hi, (1) 

2yr  d9   L    J 

v = 0, 

and the normalized viscous isothermal Reynolds equation 

(Equation A-14) becomes 

dG 
(sin 6) H3P 

1 dP 
  = 0. (2) 
dG 

These equations together with information from exist- 

ing references will be used to develop the relations for the 

11 



mass flow, inlet pressure, pressure distribution, load 

capacity and stiffness.  These relations will be developed 

primarily for the case of constant radial clearance; however, 

more general forms of some will be investigated. 

An analysis of air hammer or pneumatic instability 

will not be presented.  The information contained in Refer- 

ences (4) through (9) will be used to identify the respon- 

sible parameters and their undesirable trends.  The 

geometries of the configurations considered in these refer- 

ences do not match the geometry of the present configuration; 

however, they are sufficiently close, so that the predicted 

trends should be valid. 

I.  FLOW RESTRICTORS 

Certainly the external flow restrictor is one of the 

more important portions of a hydrostatic gas bearing.  It 

produces the gas film stiffness, which enables the bearing 

to compensate for changes in load.  Restrictors used in 

these bearings may be grouped in three basic categories: 

1. Laminar restrictors, 

2. Fixed orifice restrictors (orifice compensation), 

and 

3. Variable or inherent orifice restrictors (inher- 

ent compensation). 

12 



A fourth possible type, which will not be considered, 

is a variable servomechanism device.  Figure 4 gives the 

geometries of the flow restrictors listed above. 

Laminar restrictors, which include both capillary and 

porous restrictors, are less desirable than the remaining 

types as they are more susceptible to pneumatic instability 

and also because they provide less stiffness while operating 

at the same supply pressure (10).  For these reasons laminar 

restrictors will not be considered in the following analysis. 

Only orifice type restrictors will be considered in 

the following study.  For orifice compensation the fixed 

orifice area (AD = ird  /4) is the restrictor.  In the case of 

inherent compensation the circumference of the orifice 

together with the variable clearance height form the 

restricting area (AR = irdh). Using Figure 5, page 15, the 

following expressions can be written for the possible 

restricting areas formed by a circular orifice for bearing 

configurations with and without a pool. 

Case 1, Pool (6 > 0): 

la.  AD = Trd /4 , 
n.       O 

lb.  AR = 7rd[h + &] , 

lc.  AR = Trd jh + 6+6 I , and 

Id.  AR = 2?rR. h . 

13 



' 7 //**///// / 
Pi Pi 

Z7777777 
Capillary Restrlctor Porous Restrictor 

a.     Laminar restrictors. 

vena/ / 
/contracta' 

t ^7'/ / 7 7 4r'V * vona  rnn*i vena contracta 

Orifice Restrictor Inherent Restrictor 

b. Fixed and variable orifice restrictors. 

Figure 4. Bearing flow restrictor configuration. 

14 



Pool 

Ib., or 2b. when 6 -0- 
lc, or 2c. when 6 -0- 

Second Pool la., or 2a. when 6 ■ 0 

Figure 5.  Possible orifice type restrietors. 
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Case 2, No Pool (6 =0): 

2a.  AR ■ 7rd^/4, 

2b.  AR = 7rdh, and 

2c.  AR ■ Trd0[h + &*] . 

Only cases la, lb, 2a, and 2b will be considered. 

Cases lc and 2c must be taken into consideration when 

attempting to design an orifice restrictor. Case Id is 

undesirable for our purposes due to the possibility of high 

mass flows.  For most pool bearings R, > d. 

The conditions which ensure orifice compensation are 

as follows: 

With 5=0, 

d >  dj/4h. (A0  for 2a <  An  for 2b), o       nil n t\ t\ 

b* > d /4 - h. (An for 2a < An for 2c) . o dim rv t\ 

With 6  >  0, 

d > d^/4[hmin + b]       (AR for la < AR for lb), 

&* > dQ/4 - [ & + hmin]   (AR for la < AR for lc). 

where h ._ is the minimum expected radial clearance over an min r 

orifice. 

16 



For many pool  bearings 

V4  -[*  -  hmin]>  0; 

therefore, a second pool is required to obtain orifice com- 

pensation (Figure 5, page 15).  This feature is often 

undesirable due to the resulting increase in pool volume. 

II.  MASS FLOW 

In order to describe the mass flow through a hydro- 

static bearing it is necessary to develop separate relations 

for the flow through the restrictor and the flow through the 

bearing clearance. For the assumed case of no relative 

surface motion the mass flow through these separate portions 

is equal when the gas flow is steady. 

Restrictor flow.  The gas flow through the restrictor 

is assumed to be one-dimensional and isentropic.  For these 

conditions Reference (11) gives the following relations for 

a perfect gas which can be combined to form a theoretical 

expression for the mass flow. 

mR = PRVR ' (3) 

PR = PRftTR ■ {4) 

aR =l/^TR , (5) 

17 



UR  =  MRaR   • 

TR          r             (Y  -   1)        o" 
—*- =     1   +   M2 

Ts       L              2          *j 

-1 

» 

PR          r            (Y  -   1)        o 

-Y 
(Y-D 

(6) 

(7) 

(8) 

Rearranging Equations 4,  5,  and 6,  and  then substi- 

tuting  into Equation 3, 

mR  ■ A
RPR

M
R^ ' ftTr 

Solve Equation 8 for MR; then substitute the result and 

Equation 7 into the above expression.  After some algebraic 

manipulation 

m, R = A
RPS| 

2Y 

(Y  -   1)äTS 

2 
lY 

L\ ps 

(Y+1) 

JR 

PS 
.   (9) 

Equation 9 is corrected for deviations from the 

theoretical assumptions by multiplying it by the experimen- 

tally determined discharge coefficient which is defined as 

18 



Actual mass flow 
Cd = Theoretical mass flow (Equation 9) 

The mass flow through the restrictor for unchoked flow is, 

therefore, given as 

mR = ARPsCd] 
2r 

(Y -  D«TS 

2 
iY 

Y+l 

L\ ps • ra 1 
(10) 

The critical pressure ratio, or pressure ratio that 

initiates sonic flow through the restrictor, is obtained by 

letting MR = 1 in Equation 8, 

_Y 

P 
PC = 

'R 

L PS 
(Y 

+ i) 

Y-l 
(11) 

For constant AR, pc, and Tq, the mass flow remains constant 

when PD/PC ^ p
c>   therefore, for choked flow, the mass fl< 

through the restrictor is 

.ow 

mR = A, RpSC 

2Y 
dl  (Y  -   l)ftT< 

c c 

Y-l 
Y 

1 
<2 

(12) 

Bearing flow.  For the bearing configuration under 

consideration the mass flow through the clearance is in the 

19 



9-direction.  A relationship describing this condition may 

be derived by using the expression 

m p = PpupAp » (J-3) 

where up is the average film velocity at a particular cross 

section of the clearance whose area is Ap.  Using Equation 1 

the average velocity for the viscous laminar film is obtained 

as follows: 

2 
Up =   Uw  (parabolic velocity profile) , 

3 

u = uM at z = 
h 

2 
» 

therefore, 

-h2   dp 
up = „ (14) 
r   12p,r  d0 

Since the radius of curvature (r„) is large compared 

to the film thickness (h) the cross sectional area of the 

film, as a function of 9, may be written as 

Ap = 27rrh sin 9 . 

Substituting this expression and Equation 14 into Equation 

13 yields 

20 



nip = 

IT 

6 

h sin 9    dp 
  p   

u       d9 
(lb) 

For steady flow conditions this equation may be differen- 

tiated with respect to 9 to yield the 6-component of the 

Reynolds equation 

d0 

h sin 9    dp 
  p   

H       d9 
= 0 

This approach to obtaining the Reynolds equation has 

been used by many authors. Pan (2) derived the steady flow 

Reynolds equation in spherical coordinates using this method, 

Substituting the equation of state (Equation A-8) 

into Equation 15 results in 

trip — 

-Trh  sin 0    dp 
- p   

d9 6-ftp.T 
(16) 

For a constant radial clearance (h = const.) and steady 

viscous isothermal flow 

(sin 9)p 
_dp_ 

d9 
= K A * (17) 

Integrating 

9 
= KA In tan 

2     A       ^ 2 
+ Kr 

21 



Using the above equation and the boundary conditions 

p = p, at 8 = 81 , 

p = Po at 9 = ©2 » 

(see Figure 2, page 7) K. is determined to be 

-|p? - pi) 
KA = 

2 In 

tan 
?m 
2 

tan 

Combining this relation with Equations 16 and 17 

nip = M - P!1 
12^-ftT In T. 

(18) 

where 

tan 
T, = 

tan 

III.  FILM INLET PRESSURE 

In developing an expression for the inlet pressure to 

the film, the following assumptions will be made: 
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1.  h = constant, 

2°  pl ~ PR' and 

Oo        i   "-■   1 Q  B 

It should be noted that some of the kinetic energy 

imparted to the flow as it exits the restrictor is recovered 

and is not completely lost as assumed (assumption 2); there- 

fore» p, > PD and TR < T < Tg.  The second assumption given 

above yields sufficiently accurate results for many problems; 

however, the pressure recovery should be taken into consid- 

eration when designing a bearing to attain a particular 

stiffness level and mass flow at a given supply pressure. 

Vohr has demonstrated this in References (10) and (12).  The 

third assumption given above, which is widely used in the 

literature, is in error at most 17 per cent when nitrogen 

is used. 

Assuming that the mass flow is constant, Equations 10 

and 18 can be equated and rearranged to obtain: 

- 1 = B PS 

P2 

2 
iY 

Y+l" 

PS PS 

(19) 

The bearing parameter (B) is defined as 
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-12jiC, ln(T 
B =  9  

Tp2 W 2Y«TC 

(Y - i) 
(20) 

The normalized inlet pressure for unchoked restrictor 

flow is obtained from Equation 19 after some algebraic 

manipulation as: 

'l - (1 + BPs^P^L1 
II I=i 

PsY -PiY (21) 

Using the same approach, the expression for P, at the 

choked restrictor condition can be obtained and is given as: 

pi = 1 + BPeP„
Y 

O C 
1 - (22) 

where for a given type gas P is a constant defined by 

Equation 110  Equations 21 and 22 were given previously by 

Tang and Gross (13), 

The bearing parameter at which the flow becomes 

choked (E$c) is obtained by substituting the identity 

pi ■ Vs 

into Equation 22 and rearranging terms to get 
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2  2 
PcPS " X 

Bc = — 

H- Y-l 

PSPcV "V 1  - Pc Y 

for choked flow B < B . 

The functional dependence of the normalized inlet 

1 pressure is given as 

P1 = P1(B, Ps, y) . 

Figure 6 gives P-. as a function of B and y at constant Pg 

for both choked and unchoked flows»  Effects of changing Pg 

are not shown in this fugure; however, as would be expected 

P, increases with increasing Pg. 

IV.  PRESSURE PROFILES 

In this section pressure profiles for viscous 

isothermal flow will be developed,,  The bearing configura- 

tion under consideration may be operated at pressures which 

violate these flow conditions; therefore, a portion of this 

section will be used to describe the effects that fluid 

inertia (viscous-inertial flow) and compressibility (inviscid 

supersonic flow) have on the assumed viscous pressure pro- 

file. 

Letters contained in parentheses following a parame- 
ter indicate the functional dependence of that parameter. 
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Constant radial clearance.  For the bearing configura- 

tion under consideration operating under conditions of 

constant radial clearance (h = c = const.) and viscous 

isothermal flow, Equation 2 reduced to 

de 
(sin 0) P 

dP 

d9 
= 0 ; (23) 

therefore, 

(sin e) P 
dP 

d6 
= L, 

The normalized pressure is obtained by integrating 

this equation 

9 
— = LA In tan( —| + LQ   , (24) 

U=>ing this equation and the boundary conditions 

F = P1  at 0 = 9i , 

r  =   L       at H = y^ , 

(see Figure 2, page 7) the constants LÄ and Ln are determined 

to be 

LA = 2 ln T, 
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M -1] 
D   2 L     lnn 

In 

The following expression for the normalized film 

pressure is obtained after substituting the above constants 

in Equation 24 and rearranging terms 

{ P = Pj 1 + 
P^ In TX 

In 

1 i 
(25) 

where 

x  = 
'■■ [4-) 

When the radial clearance is constant, 

P = P(9, T, B,Y, rB, Ps). 

Figure 7 gives the theoretical pad pressure distributions 

which demonstrate the trends of the pressure when Ps and R« 

are held constant. The magnitude of the pressure is 

increased by decreasing 9.  For a bearing with fixed radius 

of curvature (r„) the area under pressure curve is increased 

by increasing B, T,, y» an(* Pc«  Holding the inner and outer 
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boundary radii (R, and R2) fixed and decreasing the radius 

of curvature results in increased surface area.  Even though 

T, is decreased using this procedure, the area under the 

pressure curve is increased, thereby increasing the load 

carrying capacity of the bearing. 

Variable radial clearance.  A more general pressure 

profile is obtained by letting the radial clearance vary in 

the 9-direction.  This situation is shown graphically in 

Figure 8 where the radial clearance is given as 

h = c[l - e cos 9J . 

The eccentricity ratio (e) is defined at 0 = 0 as 

h 

c 

The radial clearance relation given above is nor- 

malized by dividing through by h to get 

H = c[l - e cos 0] . 

Recalling Equation 2 we can write 

l           \     3      dP 

[sin.0] HJP   = K . 
d0 

Substituting Equation 26 into this relation and integrating 

using the bearing inlet conditions as a reference: 
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a. Constant radial clearance, h = c 

b. Variable radial clearance, h = c(l - e cos 9) 

Figure 3.  Bearing film geometry. 
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p* = 
0        2K 

Pl +—3T 

I de 
JQ       sin ö[l - e cos a] 

(27) 

For nonzero e numerical integration techniques were used to 

evaluate the above integral. 

Using the above equation and the normalized boundary 

conditions given on page 27, the constant K is determined to 

be: 

K = '[1 - -f] 
r r®2 r d9 
JQ      sin e[l - E cos •] 

-1 

-] 
Substituting this constant into Equation 27 yields 

the following expression for the normalized film pressure 

P = P, 1  + b - p?] 
•e, I 

e 

pf J    G(e) de      l 

1   9i 

G(e) de 

where 

1 
2 

(28) 

G(9)   = 
sin 6[l - c cos e] 3     * 

32 



Note that Equations 21 and 22 are not directly appli- 

cable for determining the normalized bearing inlet pressure 

in this case since constant radial clearance has been assumed 

in the development of these equations,     For £ = 0, Equation 

28 reduces to the constant radial clearance form, Equation 

2b. 

In Figure 9 pressure profiles for a spherical bearing 

pad are presented at eccentricity ratios of 0.4 and 0.8.  It 

was assumed that the bearing was machined with a constant 

racial clearance of c = 0.0015 inches.  These pressure pro- 

files are compared with pressure profiles that were derived 

assuming that the radial clearance was constant and equal to 

the average of the variable radial clearance.  The dramatic 

effect of large eccentricity is clearly demonstrated in this 

figure.. 

Viscous inertial flow.  At large film thicknesses or 

under conditions of high mass flow, inertia forces in the 

laminar gas film may become important [Re ^ 1) ..  Under 

these conditions the equations for gas lubrication developed 

in Appendix A are no longer valid*  For the bearing con- 

figuration under consideration operating at these conditions 

the equations given in Appendix A which describe the flow 

reduce to: 
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Momentum, 

u  9u    1  9p 
p + 

99    r  99    9z 

Continuity, 

a 
(pu sin 0)  =0  ; 

9z ■]• 
9u 

ji  I  ; (29) 

99 

Energy, 

u 9(CDT) 

90 

u 

r 

9p 
  + 

90 

1 a 

az 
[A 3T 

9z 
p ■ 

r 2 r 

. 12 m 
An exact solution for the pressure distribution of 

the film under these conditions would require numerical pro- 

cedures since the above equations- are coupled.  Approximate 

analyses of this problem have been performed by many authors, 

Gross (3) and Comolet (14, 15) have obtained approximate 

solutions in cylindrical coordinates assuming that the film 

is polytropic and the velocity profile is parabolic.  The 

last assumption requires that the inertia effects be small. 

This type analysis is easily adaptable to spherical coordi- 

nates; however, the effects of fluid inertia on the pressure 
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profile can be determined using Equation 29 without going 

through this lengthy process. 

Rearranging Equation 29, 

dp du      3 
  = - pu   + r   
86 30      3z 

9u "I 

9z J 

For a parabolic velocity profile the last term on the right 

hand side of the above equation is negative (see Equation 

14).  In order that a lubricating film exist, it is neces- 

sary that 3p/39 < 0.  The larger 3p/39 is in absolute value, 

the greater the pressure produced by the film.  Since du/60 

< 0, it is apparent that the inertia effects decrease the 

absolute value of the pressure gradient and, therefore, 

reduce the magnitude of the pressure produced by the film. 

Inviscid supersonic flow.  Sonic velocity can exist 

at the inlet to the lubricating film (16, 17, 18, 19), 

particularly for radial flows, when the mass flow or bearing 

clearance is large. Under these conditions the flow behaves 

as though it were expanding through a nozzle. At the proper 

conditions the flow will become supersonic which results in 

drastically reduced static pressure due to the large kinetic 

energy. A system of shock waves will occur followed by lower 

velocity and increased pressure.  It is obvious that viscos- 

ity can only slightly affect the flow in the immediate 
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vicinity of the inlet; therefore, inviscid, viscous-inertial 

and viscous regions can exist in the film.  The low pressure 

supersonic region and the loss in total pressure through the 

shock waves decrease the pressure produced by the film com- 

pared to the viscous predictions. 

Mori (20) obtained a solution for the radial gas flow 

between two parallel disks by assuming that only a supersonic 

region and a viscous region exist.  This solution has been 

confirmed experimentally. 

V.  LOAD CARRYING CAPACITY 

The load carrying capacity of the model bearing 

(Figure 2, page 7) is defined here as the resultant film 

force which acts along the axis of symmetry of the pad to 

resist external loads placed on the bearing.  For the bear- 

ing configuration under consideration the load carrying 

capacity is given as 

w = JrRjjpj^ + /   I  PrBR cos 6 dtp d9 - TR2P2 » 
91  o 

where 

R = rfi sin 9 . 

Factoring this expression and performing the first 
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integration, the normalized load carrying capacity is 

obtained in general form as 

W = 
" sin 0, ~|2 2 f  2 

 H pi + ?-/   Psi 

sin e2 J   L      (sin e2) J0 

n9cos0d9  -  1   , 

(30) 

where 

w 
W  = 

irrgUin 02)2P2 

A general expression for the load carrying capacity 

of the bearing is obtained by substituting Equation 28 into 

Equation 30 

W = 
sin 0 

sin G 2 J 

2P, 
P, + 
1   (sin e2)2 

r i + 
[■ - *>] (• G(9) d9 

,t p,  /   G(9) de 

sin 9 cos 0 d0 - 1 , 

(31) 

where 

G(9) = 
sin 0(1 - e cos 0)3 
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Substituting Equation 25 into Equation 30, or letting 

e = 0 in Equation 31, an expression for the load carrying 

capacity of a bearing with constant radial clearance is 

obtained as 

W = 
2P, 

(sin 02) 

r l + M -1] 
P^  In T1 

In sin 8  cos 0 dfi -  1   . 

(32) 

There are no closed form solutions for the integrals 

in Equations 31 and 32; therefore, numerical integration 

methods are required,, 

Equation 32 may be reduced to an approximate form 

which is similar to the form given in References (3) and (13) 

for the load carrying capacity of a flat circular pad»  This 

approximate solution has a limited range of applicability. 

It involves numerical integration; however, the integrals 

are in a form for which tables of solutions exist in hand- 

books. 

If it is assumed that 0« is small, then Equation 32 

may be reduced to 
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rei i 
L 02 J 

2P, 
pi +TT 

e, 

/ 
9 

1 + =-r 
G 

* -R-) 
In 

e 
e de - l . 

Let 

■2Pi Inl-57 
P*-I 

(33) 

then 

W . Prf + »/ [i - T "(l^] 9 d9 -   1   ,      (34) 

where 

G  = 
0 

0, 

Now let 

VT " [' • T iVl] (35) 
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then 

e2 = I - In 
el 

Using the above equality as the exponent of e, then taking 

the square root and manipulating the expression algebra- 

ically 

I-*2 

9 = exe
2e 2 . (36) 

Substitute this result and Equation 35 into Equation 34 to 

obtain 

9   2P-.e2eI  f 2 9 -2 
W = P,ef -  i_L  /  SV* d£ - 1 . (37) 

Applying the small angle assumption to Equation 25 

and combining it with Equations 33 and 35 yields 

e = VT—- . (38) 
pi 

The limits of integration in Equation 37 are determined 

using this expression and the following boundary conditions: 
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at e = er 5 = zv P = P1§ e = e1, 

at e = e2t 5 = £2» 
p = 1» 0 = l- 

Reversing the limits of integration and integrating 

by parts Equation 37 becomes: 

P, 

p2g|2eI       i 2 

W =       1rl     / e"^    d£   • (39) 

This expression reduces to: 

W ■ 'I^VTT (erf (^1 -erf {ify ■   <40) 

Values of the error function in the above equation are found 

tabulated in many mathematical tables. 

Figure 10 gives a comparison between the solutions 

obtained from Equations 32 and 40.  Flat pad theory from 

Reference (13) is also presented.  For this comparison the 

pad boundary radii (R, and R2) were held constant; therefore, 

02 was varied by changing the radius of curvature (rR) of 

the bearing. 

This figure shows the increased load carrying capacity 

of a spherically surfaced pad over a flat pad. Flat pad 

theory is shown to yield a better approximation to the 
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results from Equation 32 than the simplified load carrying 

capacity theory of Equation 40.  The simplified theory yields 

a 10 per cent error in load carrying capacity at 0~ = 47.5 

degrees, while the flat pad theory yields this same error 

at 0„ = 65 degrees.  The trend predicted by Equation 40 is 

opposite to that predicted by Equation 32. 

For constant radial clearance 

W ^ W(B, Tr rB, Y. Ps) • 

Figure 11 shows that W increases continuously with B for 

constant y  and Pg.  At the higher values of B this increase 

appears to become asymptotic.  For a constant radius of 

curvature W increases with increasing Bt T,, Y» and Ps.  As 

discussed previously, the pad surface area is increased when 

the radius of curvature is decreased with the pad boundary 

radii being held constant.  This results in decreased t, and 

increased load capacity.  Figure 10, page 43, shows that the 

load capacity for a fixed size pad is maximized when its 

geometry is hemispherical. 

VI.  STIFFNESS 

The bearing stiffness is defined as the slope of the 

load carrying capacity versus radial clearance curve.  For a 

hydrostatic bearing, operating with constant Pg and Y» it 

can be determined as follows: 
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s = 
dw 

dh 

dw 

dPn 

dPj 

dB 

dB 

dh 
(41) 

The stiffness is affected by the method of bearing compensa- 

tion through the derivative dB/dh. 

In order to evaluate the bearing stiffness, each of 

the derivatives in the above chain will be investigated 

separately.  For any particular set of conditions these 

separate terms will be evaluated then substituted into Equa- 

tion 41 to obtain the stiffness. 

The derivative dw/dP,.  Differentiating Equation 32 

with respect to P, yields dW/dP, for constant radial 

clearance 

dW f" sin Gj^ " 

dP1        [ sin 92 (sin e2)2 

J
9l L    piln TI    l TI 

sin 9  cos e  d6 

P2(sin 02)2 ln TX 
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lnl——I sin 0 cos 9 d0 

L     piln TI    I *i /. 

i • 
2 

(42) 

Recall that 

dw 

dP, 
= (TrR^p2) 

dW 

dP, 

There are no closed form solutions for the above integrals; 

therefore, numerical integration methods are once again 

required. 

Equation 42 can be reduced to an approximate form 

which is similar to the form given in Reference (3) and (13) 

for the derivative dw/dP, of a flat circular pad.  The range 

of applicability of this solution will be limited to the 

applicable range of Equation 40.  The final result will 

require the evaluation of Equation 40 which is accomplished 

using numerical tables. 

Assuming that 92 is small, using Equation 33 and the 

definition of 0, Equation 41 can be reduced to 

dW 

dPn 

= 6^ + 2 

-1 

it 
1 
2 

2 

I 

e 
In 

e l /J 
e de - 
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r1    2       ,i 
2 lnl 

e 

e, 
e de 

Substitute Equations 35 and 36 into this relation. 

Use Equation 38 and the boundary conditions on page 42 to 

determine the new limits of integration. After reversing 

the limits of integration this procedure results in 

dW 

dP, 
= e* + 

2pieieI r pi 
,vr 

S2e"5    dl=  - 

P, 

2P19^eII    r      Pl      J 

VT     [ P? - i J 

yr 
e'5    d£  . 

VT 
p, 

Integrating the first integral by parts and recalling 

Equation 39 

dW        P,    f 

dPl     Pl-  1     \ 

21 
1 - 

1 J 

+ 1 - *} (43) 

where W is obtained from Equation 40. 
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The derivative dP^/dB.  For the unchoked flow condi- 

tion the bearing inlet pressure is given by Equation 21. 

This equation is more easily differentiated after it has 

been rearranged. The following forms of Equation 21 prove 

useful in obtaining the final expression of the derivative 

Y-l 1 I     Y-TY-l 
P2 - 1 = BPS

2Y pry  ps Y _ ?i Y  f (2i„i) 

1=1 1=1 P2 .  ! 
ps Y   - pi Y   =—3TT ' (21*2) 

BPs2YpiY 

Y-l    2 
B2PS Y p Y i 

2       = Y-T Y-l     * 121.3J 

[-> ■'] p y - p y *S *1 

Differentiate Equation 21.1 with respect to B and 

substitute Equation 21.2 into the result: 

dP 
2P 1    _   [Pl -  j    ,     [Pl -  j       dPl 

1    dB B Y
P
! dB 

Y-l     1 
r T        2       Y       Y r Y - ii B

2
PS Pl   dPl 

[     2Y      J       [?l -  l] dB 
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Factoring this equation and substituting Equation 21.3 yields 

a . [±d I   tt-A 
dB 

1 + 

2PXB 

(Y - i) 

2r?l 

Y-l 
p, ^ Y ■m 

r (44) 

This gives the derivative when the flow is not choked. 

For the choked flow condition, Equation 22 gives the 

bearing inlet pressure.  This equation is operated on and 

rearranged to obtain the following useful relations: 

(22.1) p?.l 
I   /        1=1 

= BPspcY y x" pcr 

V- c                             1 
BPSPcY 

(22.2) 

Differentiating Equation 22.1 with respect to B and 

substituting Equation 22.2 

dP 1 _ 

dB 2P1B 
(45) 

This gives the derivative when the flow is choked. 
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The derivative dB/dh. The bearing parameter is given 
3 

in Equation 20. Only the term AR/h in this equation is a 

function of h. The method of bearing compensation determines 

the manner in which this term varies with h; therefore, the 

derivative dB/dh is dependent on the method of bearing com- 

pensation. 

For the inherently compensated bearing with a pool, 

case lb on page 13, 

TTd b + b] 

Substituting this into Equation 20 and differentiating with 

respect to h, 

dB 

dh 

-3B 
1 - 

1 + 

(46) 

For an inherently compensated bearing without a pool, 

case 2b on page 16, 

AR      TTd 

dB 

dh 

-2B 
(47) 
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The final case in an orifice compensated bearing 

without a pool, case 2a on page 16, 

,2 
AR _ ^o 

h3    4h3 

dB    -3B 

» 

dh 
(48) 

The effect of the restrictor on bearing stiffness is 

demonstrated by forming the ratio of Equation 47 and 48: 

Inherent    _ 

-2B 

UJ h 2 

1 dB 1 
Orifice 

-3B 3 

\  dh h 

This ratio shows that the inherent compensated bearing has 

only two thirds the stiffness of the orifice compensated 

bearing. 

For constant radial clearance 

S = S(B, Tp rß, Y» 
ps) • 

In addition, as demonstrated above, stiffness also depends 

on the method of bearing compensation.  The theoretical 

information presented in Figure 12 was obtained for the 

spherical model bearing (R2 = 0.7b inches and rR = 1.438 
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inches).  This figure demonstrates that with y» ro» in and 

P- constant the stiffness increases with B until it reaches 

a maximum, then decreases with increasing B.  It is important 

to note that with B, rß, x,, and P~ held constant, increasing 

Y decreases the stiffness level.  The small increase in y 

caused a considerable reduction in the maximum stiffness 

level.  Although not shown, the trends of stiffness with r«, 

T,, and Pg will be similar to the trends of the load carry- 

ing capacity with these same variables.  For a given con- 

figuration, as predicted above, orifice compensation is shown 

to increase the stiffness level over that obtained using 

inherent compensation by a factor of 1.5. 
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CHAPTER IV 

EXPERIMENTAL TECHNIQUE 

I. *  PROCEDURE 

An experimental investigation was conducted to verify 

theoretical predictions of the static and dynamic character- 

istics of the model bearing for different restrictor con- 

figurations. The parameters which were varied in this 

investigation are given as follows: 

1. Supply pressure (Pc)» 

2. Bearing load (w), 

3. Pool depth (&), 

4. Restrictor type (inherent and orifice), 

5. Gas type (nitrogen and helium), and 

6. Restrictor size. 

Model configurations used in these studies are given in 

Table I. 

The object of this experimental investigation was to 

determine the actual load capacity of each configuration and 

to observe its dynamic behavior when nitrogen is used as the 

working gas.  Helium was used only to obtain additional data 

from these configurations for theoretical comparison. 

Bearing dynamic stability and load capacity were 

determined for a given configuration at a given load by 

55 



TABLE I 

MODEL BEARING CONFIGURATIONS 

en 
en 

Config- 
uration Tl 

d 
in. 

do 
in. 

b 
in. 

91 
rad. 

02 
rad. 

Compen- 
sation 

A 0.0179 0.029 0.029 0.0 0.01008 0.5488 Inherent 

B 0.0179 0.029 0.005 0 0.01008 0.5488 Orifice 

C 0.471 0.029 0.029 0.0005 0.2639 0.5488 Inherent 

D 0.02902 0.047 0.047 0 0.01634 0.5488 Inherent 

E 0.03458 0.055 0.055 0 0.01947 0.5488 Inherent 

F 0.471 0.029 0.029 0.001 0.2639 0.5488 Inherent 

G 0.471 0.029 0.029 0.002 0.2639 0.5488 Inherent 

H 0.471 0.039 0.039 0.0005 0.2639 0.5488 Inherent 

rB = 1. 438 in. 



measuring the bearing deflection at supply pressures ranging 

from approximately 850 psig down to the pressure at which - 

either air hammer instability resulted or the film collapsed, 

This was usually done in 50 psi steps. A complete list of 

the experiments which were conducted is given in Table II. 

II.  PRECISION OF RESULTS 

The accuracies of both the bearing deflection measure- 

ments and the physical dimensions of each bearing configura- 

tion were of primary concern.  In order to improve the 

accuracy of the deflection measurements, both the dial 

indicator-calibration and alignment were checked periodi- 

cally.  When configuration changes were made, the bearing 

was set up in the shop and adjusted until the dimensions 

given in Table I, page 56, were assured.  This adjustment 

quite often involved re-lapping the bearing surfaces.  Esti- 

mates of the accuracy of the quantities measured in this 

investigation are given in Table III, page 59. 
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TABLE II 

LIST OF EXPERIMENTS 

Configuration 
Load 1 Range 

lb. 
Load Increment 

lb. Gas 

A 25 - 225 25 N2 

A 50 - 200 50 He 

B 25 - 225 25 N2 

B 25 - 275 50 He 

C 25 - 250 25 N2 

C 75 - 225 150 He 

D 25 - 250 25 N2 

E 25 - 250 25 N2 

F 25 -  50 25 N2 

F 25 -  50 25 He 

G 25 25 N2 

G 25 25 He 

H 25 -  75 25 N2 
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TABLE III 

DATA PRECISION 

Measurement Magnitude of Measurement  Estimated Error 

d,dc 

h 

P 

w 

6 

0.005 to 0.055 in. 

0 to 0.003 in. 

0 to 850 psig 

25 to 275 lb. 

0.0005 to 0.002 in. 

±0.0001 in. 

±0.00003 in. 

±2.5 psi 

±0.2 lb. 

-0.0001 in. 
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CHAPTER V 

RESULTS AND DISCUSSION 

The object of this study was to determine a restrictor 

configuration which would maximize the load capacity and 

stiffness of the journal bearing while insuring pneumatic 

stability.  It was also considered desirable to minimize the 

mass flow; however, this was a secondary consideration. 

Laminar restrictors were eliminated from consideration since 

they are known to be more susceptible to pneumatic insta- 

bility and provide less stiffness than orifice type 

restrictors (10). Preliminary tests using the model bearing 

indicated that slight pneumatic instabilities existed with 

inherent compensation even at the smallest available pool 

volume. An orifice compensated pool type bearing was there- 

fore not considered since its characteristics would tend to 

increase the possibility of pneumatic instability. The 

restrictor configurations considered were, therefore, inher- 

ent compensating both with and without a pool and orifice 

compensating without a pool. 

I.  STATIC CHARACTERISTICS 

The journal bearing shown in Figure 1, page 2, should 

have been constructed such that each pad is operating at its 
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maximum stiffness level when there is no external load on 

the bearing.  Under this condition the bearing will undergo 

a minimum deflection from its zero load position to compen- 

sate for a change in external load.  This can be pictured 

with the aid of the single pad load characteristics presented 

in Figure 13 if the journal bearing is thought of as consist- 

ing of two horizontally opposed spherical thrust pads.  The 

load carrying capacity of a simplified journal bearing of 

this type is obtained from a pad characteristic curve by 

taking the difference in the loads at the smaller and larger 

clearances of the deflected journal bearing.  The difference 

in these clearances is indicated in Figure 13 as AH, which 

is the operating range of the journal bearing.  The zero 

load constant radial clearance of the journal bearing is 

given as C. 

In this figure characteristic curve 1 has its maximum 

stiffness point located at a clearance smaller than the zero 

load clearance, while characteristic curve 2 has its maximum 

stiffness point located at the zero load position.  It is 

shown in this figure that in order to produce the same load 

carrying capacity a journal bearing operating with character- 

istic 1 must undergo a much greater deflection than one 

operating with characteristic 2. 

The load characteristic curves shown in Figure 13, 

are for constant radial clearance.  In a journal bearing the 
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Note: For each curve the AH 
required to obtain a 
AW ■ 63.5 is given.   The 
centered position, or zero 
load clearance of the bearing 
is C ■ 12. 

C - 12 

Maximum Stiffness 
Points 

i 

8 12 16 

Normalized Clearance, H 

24 

Figure 13.  A comparison of pad load capacity 
characteristics. 
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radial clearance is constant only at the zero load position. 

As the bearing deflects from this centered position the abso- 

lute magnitude of the eccentricity ratio increases. The 

most important effects of eccentricity on film pressure are 

encountered at large positive eccentricity ratios.  At this 

condition, as shown in Figure 9, page 34, the film pressure 

distribution is substantially reduced below that predicted 

by the constant radial clearance theory; therefore, the load 

carrying capacity is also reduced.  For a given load capacity 

the absolute magnitudes of the eccentricity ratios experi- 

enced using characteristic curve 2 will be smaller than 

those experienced using characteristic 1; thus, characteris- 

tic curve 2 is once again more desirable. 

The journal bearing shown in Figure 1, page 2, repre- 

sents a configuration whose pads may not be operated at 

maximum stiffness when the bearing is in the zero load condi- 

tion.  It is shown in Figure 12, page 53, that when the pads 

are operated at Ps = 56.6 the maximum stiffness level for 

all restrictor configurations under consideration occurs at 

a bearing parameter somewhere in the range from approximately 

90 to 140.  Using the definition of the bearing parameter 

(Equation 20) it can be shown that for the 0.0015 inches 

zero load constant clearance of the existing journal bearing, 

and a bearing parameter in the above range, the restrictors 

under consideration will be of extremely large size.  In all 
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4t 
cases they will produce values of Re which exceed the 

limits of the viscous-isothermal theory (see Appendix A). 

For the pool bearing configuration geometrical restraints 

would make it impossible to achieve the required restrictor 

size. 

Increasing the pad size and decreasing the zero load 

constant radial clearance, would seem to be the direction to 

take in order to improve this situation.  Unfortunately, due 

to angular freedom requirements on the bearing and the 

requirement that the bearing be self centering, no substan- 

tial increase in pad area is possible.  By reducing the zero 

load constant radial clearance of the journal bearing so 

that Re < 1 for bearing parameters in the range 90 to 140, 

the optimum characteristic could be attained; however, the 

extremely small clearances at which the bearing would be 

required to operate invalidate this approach. 

In attempting to obtain an optimum bearing restrictor 

for the journal bearing, it became obvious that in order to 

avoid the load capacity reduction resulting from viscous 

inertial flow, it would be necessary to use small restrictor 

sizes.  Even for these small restrictors, the use of large 

supply pressures cast doubt on the validity of using viscous 

theory to describe the complete gas film. This is due to 

the increased possibility of supersonic flow at the inlet to 
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the film.  These conditions made an experimental verifica- 

tion of the theoretical results a necessity. 

In order to compare theoretically the performance of 

the various restrictor configurations being considered, d 

was fixed at 0.029 inches and estimates of bearing load 

carrying capacity, bearing stiffness, and bearing mass flow 

were obtained.  These results for Configurations A, B, and C 

(see Table I, page 56) are presented in Figures 14, 15, and 

16 where each value of h is assumed to represent a constant 

radial clearance and the supply pressure is held constant. 

For a restrictor of this size, Figure 15 shows that the pads 

would be operating well below maximum stiffness at the zero 

load position (h = 0.0015 inches).  As related previously, 

this situation requires large bearing deflections to obtain 

maximum load capacity.  The maximum practical journal bear- 

ing operating range is indicated in these figures and in 

many to follow. 

These theoretical results indicate that for a journal 

bearing having the indicated operating range, the inherently 

compensated pool bearing (Configuration C) has the most 

desirable load capacity and stiffness characteristics, while 

the inherently compensated bearing without a pool (Configura- 

tion A) has the least desirable. The mass flow through the 

bearing would be minimized using orifice compensation 
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Configuration d, In. 

 A 0.029 

 B 0.029 

 C 0.029 

Ps-56.6 

Nitrogen 

dp in. 

0.029 

0.005 

0.029 

6, in.     Compensation 

0 
0 

0.0005 

Inherent 

Orifice 

Inherent 

Operating Range 

of Journal Bearing inTT 

0.8       1.2 1.6        2.0       2.4        2.8 3.2 

Radial Clearance, h x 103, in. 

Figure 14.     Theoretical pad load characteristics. 
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Configuration    d, in.     d^ in.      6, in.       Compensation 

40 

30 

I 

x  20 

t/j 
to 
Q> 

IS) 

10 

 A 

■56.6 

Nitrogen 

0.029 

0.029 

0.029 

0.029 

0.005 

0.029 

Operating Range 

of Journal Bearing 

± 

0 

0 

0.0005 

0.4        0.8        1.2 1.6       2.0        2.4 

Radial Clearance, h x 103, in. 

Inherent 

Orifice 

Inherent 

2.8 3.2 

Figure  15.     Theoretical pad stiffness  characteristics. 
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Configuration    d, in.     d^ in.   6, in.   Compensation 

I 

c 

« 
t/l 
I 

C 
1/1 

5 
Operating Range 

of Journal Bearing 

0.8        1.2        1.6       2.0        2.4 

Radial Clearance, h x 103, in. 

3.2 

Figure 16.  Theoretical pad mass flow characteristics. 
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(Configuration B). Maximum bearing mass flow would be 

obtained when inherent compensation with a pool is employed. 

It should be noted here again that these theoretical 

results do not account for the pressure recovery in the flow 

after it leaves the restrictor.  In the theoretical develop- 

ment, it has been assumed that all of the kinetic energy 

imparted to the flow as it leaves the restrictor is dissi- 

pated.  Therefore, the film inlet pressure must be the 

static pressure downstream of the restrictor at the vena 

contracta. Some of the kinetic energy is recovered as pres- 

sure; thereby, making the actual inlet pressure higher than 

the predicted value.  Naturally, the greater the pressure 

differential across the restrictor the larger the kinetic 

energy.  As shown by Vohr (10), this has the effect of 

increasing the mass flow and decreasing the stiffness when 

compared to the theoretical predictions.  Vohr has observed, 

as one might expect, that the pressure recovery for inherent 

compensation is greater than that for orifice compensation. 

An experimental investigation was conducted to verify 

the theoretical bearing load carrying capacity estimates for 

model bearing Configurations A, B, and C.  Results from this 

investigation obtained at a constant supply pressure are 

presented in Figures 17, 18, and 19. As predicted by the 

viscous-isothermal theory, for a fixed supply pressure, the 

use of helium causes a considerable increase in pad load 
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0.8        1.2 1.6       2.0        2.4 

Radial Clearance, h x 103, in. 

Figure 17.  Experimentally determined load 
characteristics of Configuration A. 
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400 r 

Gas          Re* 

o N2        0.0398 

D He        0.00845 

d ■ 0.029 in., (^ 

6 -0 

Ps -56.6 

0.005 in. 

Theoretical Values (Equation 32) 

— Experimental Values Configuration A 
Inherently Compensated 

Note:   Re* is given for h ■ 3 x 10"* in. 
and 6 - Ö2- 

Orifice Compensation 

0.8       1.2        1.6        2.0       2.4 

Radial Clearance, h x 103, in. 

Figure 18.  Experimentally determined load 
characteristics of Configuration B. 
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400 

360 - 

320 

280 

240 

*  200 
■cT 

160 

120 

80 

40 

Gas 

N2 

He 

d - 

6 

J?e* 

0.110 

0.0324 

-0.029 in. 

0.0005 in. 

-.56.6 

Theoretical Values (Equation 32) 

 Experimental Values Configuration A 
Inherently Compensated 

Note:   Re* is given for h 3 x 10"4 in. 

Inherent Compensation 

± 
0.4        0.8        1.2        1.6       2.0       2.4 

Radial Clearance, h x 103, in. 

2.8 3.2 

Figure 19.  Experimentally determined load 
characteristics of Configuration C. 
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carrying capacity over that obtained using nitrogen.  The 

primary reason for this great improvement in load carrying 

capacity is that at each particular value of the radial 

clearance the bearing parameter for helium is greater than 

that for nitrogen.  Note that in all these figures, Re for 

helium is considerably smaller than that for nitrogen. 

The load capacity theory used for comparison purposes 

in these figures was obtained from Equation 32 where constant 

radial clearance is assumed.  This assumption should be valid 

for these comparisons since at the smaller radial clearances, 

which is the range of particular interest, the model bear- 

ing will be operating at small eccentricity ratios.  This is 

a result of the method used in constructing the model bear- 

ing which has been discussed previously on page 6. 

Given in Figures 17 and 18, pages 70 and 71, are the 

experimentally determined load carrying capacities of Con- 

figurations A and B.  These results show that over the 

operating range of the simplified journal bearing the inher- 

ently compensated bearing is superior to the orifice compen- 

sated bearing. This is contrary to the theoretical compari- 

son given in Figure 14, page 66, which predicts a slight 

advantage for the orifice compensated configuration. Note 

that the experimental data for Configuration A agree well 

with theoretical predictions while the experimental data for 

Configuration B do not. 
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The disagreement with theory for Configuration B is 

worse at radial clearances where it should be best. At the 

smaller radial clearances the effects of fluid inertia, pres- 

sure recovery, and eccentricity should be small. The 

performance of Configuration A substantiates this assumption. 

Since it appears that viscous-inertial flow is not directly 

responsible, the remaining inviscid effect likely at these 

values of Re is supersonic flow at the inlet to the film. 

It would then appear that at these particular operating 

conditions Configuration B suffers a greater pressure loss 

due to supersonic flow at the inlet than does Configuration 

A.  As shown in Figure 4, page 14, the gas flow into the 

bearing film inlet for these restrictor configurations 

differs greatly. 

The experimentally determined load capacity of Con- 

figuration C given in Figure 19, page 72, falls below the 

theoretical predictions. Due to the larger circumference of 

the film inlet section and the resulting reduced entrance 

velocities, the possibility of supersonic flow at the inlet 

should be remote. Viscous-inertial effects might be present 

particularly in the case of nitrogen due to the high values 

of Re ; however, the resulting trends for helium are the 

same as those for nitrogen at one third the value of Re . 

Experimental results for both nitrogen and helium 

seem to duplicate the experimental results for Configuration 
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A.  This would seem to indicate either that a pool did not 

exist, or that the pressure in the pool is not constant as 

assumed theoretically.  The fact that a pool effect existed 

can be established through Figure 20.  Configuration C is 

shown to support the same load at a smaller supply pressure 

than Configuration A.  Data obtained from Configuration F 

(see Table I, page 56) and presented in this figure indicate 

that increasing the pool depth above & = 0.0005 inches will 

improve the load carrying capacity of the bearing.  It would 

then seem that pool pressure for Configuration C is not con- 

stant as assumed.  Configuration C offers no increase in 

load carrying capacity over Configuration A, which once 

again is contrary to the theoretical predictions. 

The experimental results given in Figure 21, page 77, 

demonstrate the effect of bearing parameter (B) and modified 

Reynolds number (Re ) on the load carrying capacity of the 

model bearing, when inherent compensation is used without a 

pool. 

Theoretical trends given in this figure indicate that 

increased load carrying capacity may be obtained at a given 

radial clearance (h) by increasing the bearing parameter at 

that clearance. This procedure results in a shift of the 

load characteristic curve to the right, into a more favor- 

able position. These theoretical results, of course, assume 

that the gas film is viscous dominated. 
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Figure 20. Effect of supply pressure on the load capacity of 
Configurations A and C. 
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Figure 21.  Effect of bearing parameter and Re on the 
model bearing load carrying capacity. 
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The experimental results given for Configuration A 

in this figure conform to the above theoretical trends. The 

bearing parameter in this case was increased by changing the 

working gas from nitrogen to helium.  This resulted in a 
■it 

decrease of Re . 

When it becomes necessary to use a particular type 

gas, the bearing parameter may be increased by increasing 

the restrictor size. This method results in an increase of 

Re .  Using this approach the experimental data for Con- 

figurations D and E {see Table I, page 56) were obtained. 

At the smaller radial clearances these data demonstrate a 

trend opposite to theoretical predictions.  As the restrictor 

size increases, the load carrying capacity decreases. The 
-X- 

increasing magnitude of Re indicates that inviscid effects 

in the film are responsible for these reversed trends.  It 

would then appear that when nitrogen is used at this supply 

pressure Configuration A is approaching a limit for the 

viscous-isothermal theory. 

This portion of the investigation has brought out many 

faults in the design of the existing journal bearing. These 

may be summed up as follows: 

1. Pad areas too small, 

2. Zero load constant radial clearance too large, 

3. Operating range too large, 

4. Load carrying capacity too small, 
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5. Operating pressure too high, and 

6. Re too large. 

There is nothing that can be done to this particular con- 

figuration which will substantially improve its performance. 

From the results of this investigation it would seem that the 

only practical modification would be to change the restrictor 

configuration to inherent compensating without a pool.  If 

this proves to be unsatisfactory then the next step should 

be to design a new core. 

II.  DYNAMIC CHARACTERISTICS 

Dynamic instabilities may be encountered in many 

bearing configurations, particularly journal bearings. When 

pressure pools are used, the chances of instability are 

increased. A gas bearing cannot be operated effectively 

when dynamic instabilities are present.  The two most common 

types of dynamic instability encountered in gas journal bear- 

ings are pneumatic instability and whirl.  Pneumatic 

instability is the subject of this investigation. 

Whirl instability is inherent in many journal bear- 

ings.  It occurs at continuous angular speeds above a certain 

critical speed. A bearing may, therefore, be operated at 

speeds below this critical value without encountering whirl. 

Increasing bearing film stiffness and decreasing effective 
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bearing mass both increase the magnitude of the critical 

speed. 

As a result of fluid compressibility, the instanta- 

neous mass inflow to the bearing does not in general equal 

the instantaneous mass outflow.  Under the proper conditions 

this can supply a mechanism by which energy may be periodi- 

cally added to the system in phase with the motion.  This 

produces pneumatic instability or "air hammer," which is a 

dynamic instability independent of system resonances. 

Pneumatic instability is not as well ordered as whirl; there- 

fore, it must be eliminated.  Results from the experimental 

investigation presented herein, are for cases where this 

instability was encountered. 

Due to the difficulty in establishing a complete 

analysis of this phenomena, approximate solutions have been 

obtained.  In order to obtain these solutions, perturbation 

techniques have been used and it has been assumed that film 

entrance effects along with fluid acceleration and inertia 

forces are negligible. Using these assumptions the quasi- 

static lumped parameter analysis, References (4) through (8), 

and the distributed parameter analysis, Reference (9), have 

been obtained.  The latter analysis includes density-time 

effects.  The lumped parameter analysis neglects these 

effects and, therefore, does not include the damping due to 

squeeze film action. 
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Theoretical results given in these references indi- 

cate that the likelihood of pneumatic instability occurring 

is decreased by reducing the magnitude of the following: 

1. Pool volume, 

2. Pressure drop across the restrictor (p~ - p,), 

3. Bearing effective mass, 

4. Bearing film stiffness (s), and 

5. Heat transfer from the gas. 

It is also decreased by increasing the magnitude of 

the following: 

1. Supply orifice area (AR), 

2. Magnitude of the outer bearing limit (FU) relative 

to the inner limit (R,), and 

3. Gas temperature. 

Many of the trends listed above as having unfavorable effects 

on dynamic stability are considered desirable for improving 

static stability. 

It should be noted that compared to orifice compensa- 

tion, inherent compensation produces less stiffness and a 

smaller pressure drop across the restrictor.  It does not 

require a pressure pool to operate.  Richardson (5), using 

a lumped parameter analysis, has shown that the bearing 

damping is decreased by the existence of even the smallest 

pressure pool downstream of a restrictor. Increasing the 

bearing surface area of a gas bearing provides more squeeze 
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film surface and thus more damping.  For these reasons, an 

inherently compensated bearing without a pool is theoreti- 

cally the configuration least susceptible to pneumatic 

instability. 

It was noted during this experimental investigation 

with the model bearing that in the majority of cases pneu- 

matic instability began as a small disturbance at high 

pressures and grew in amplitude as the pressure was decreased. 

The limited ability to measure this instability, for this 

investigation, resulted in its development being grouped 

into the following three classifications: 

1. Low amplitude instability.  This stage in the 

development was detected by a high frequency 

noise.  The amplitude was too small and the 

frequency too high to be measured by the dial 

indicator; however, when a sharp pointed instru- 

ment was placed against the bearing a vibration 

could be detected. 

2. Measurable amplitude instability.  This more 

developed stage was detected both by a high 

frequency noise and by an oscillation of the 

indicator needle. 

3. Metal to metal instability (Air Hammer).  The 

instability was completely developed at this 

stage and could be detected by the violent 
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unsymmetrical movement of the indicator needle 

and by the characteristic sound of metal 

surfaces in violent intermittent contact. 

All of the instabilities noted during the experimental 

program are recorded in Figure 22.  This figure used with 

Table II, page 58, will give complete information on the 

stability characteristics of the configurations which were 

tested.  Figure 22 shows that the pool bearing configura- 

tions, with the exception of Configuration C, all encountered 

air hammer.  The use of helium improved stability for these 

configurations.  Slight instabilities were encountered with 

Configuration C.  These instabilities appear in a somewhat 

random manner and are absent at the extremes of the load 

range.  Configuration B exhibited instabilities over portions 

of its load range.  These instabilities were generally 

larger than those encountered by Configuration C; however, 

air hammer did not result.  This configuration had only a 

slight pool which was necessary to insure orifice compensa- 

tion.  It is of particular interest to note that all of the 

configurations tested demonstrated pneumatic instabilities 

with the exception of the inherently compensated configura- 

tions without a pool. 

Figure 23, page 85, gives the experimentally deter- 

mined stability characteristics of Configuration F. Changing 

the working gas from nitrogen to helium is shown to increase 
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Configuration w, lb.   Gas 
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B 
B 
B 
B 

50 
75 
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25 
25 
50 
50 
25 
25 
25 
50 
75 
50 
75 
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25 
75 
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Low Amplitude Instability 
Measurable Amplitude Instability 

ES223   Metal to Metal Instability (Air Hammer) 

200       300        400       500        600 

Supply Pressure, ps, psig 

Figure 22.  Summary of model bearing instabilities. 
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Figure 23.  Dynamic instabilities of Configuration F. 
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stability.  This has the effect of decreasing both the pres- 

sure drop across the restrictor and the stiffness.  Increas- 

ing the load on the bearing is shown to. decrease stability. 

This is a result of the increased effective mass.  Comparing 

the results for Configuration F and those for Configurations 

C and G (see Table I, page 56) in Figure 22, page 84, it is 

shown that increasing the pool volume is destabilizing.  All 

of the above trends are in agreement with theoretical pre- 

dictions. 

Comparing the performance of Configuration H (see 

Table I) with that of Configuration C, both given in Figure 

22, it can be seen that increasing the restrictor size 

decreases stability.  This is contrary to the theoretical 

predictions for a viscous dominated film; however, due to 

the high values of Re  at the condition investigated it is 

highly doubtful that a viscous film existed.  Due to the 

film conditions under which this instability was observed 

little can be said with certainty about its cause. 

From the results of this portion of the investigation 

it is obvious that the pools of the journal bearing Figure 1, 

page 2, were much too large; thus, causing it to be unstable. 

Each pool was 14 times the size of the pool in Configuration 

F which was found to have a fully developed pneumatic 

instability. 
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The only restrictor configurations found to be com- 

pletely stable during this investigation were the inherent 

restrictors without a pool.  Fortunately the same type 

restrictors were also shown to be the best statically.  The 

restrictor configuration of the journal bearing was changed 

to this type.  The geometry of the modified journal bearing 

and its performance characteristics are presented in Appendix 

B. 
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CHAPTER VI 

CONCLUSIONS 

An investigation was conducted to determine a restric- 

tor configuration which will insure pneumatic stability and 

maximize the load carrying capacity and stiffness of the 

pneumatically unstable spherical journal bearing shown in 

Figure 1, page 2.  Restrictor configurations considered were 

inherent compensating both with and without a pool and 

orifice compensating without a pool. The model bearing 

shown in Figure 2, page 7, a duplicate of a journal bearing 

pad, was used for the experimental verification of theoreti- 

cal predictions for the bearings static and dynamic charac- 

teristics. 

Within the range of variables covered in the experi- 

mental investigation it can be concluded that changing the 

restrictor configuration of the existing journal bearing to 

inherent compensating without a pool will insure pneumatic 

stability and maximum load carrying capacity and stiffness. 

This conclusion is in agreement with theoretical predictions 

of dynamic behavior and is in disagreement with theoretical 

predictions of load carrying capacity and stiffness. 
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APPENDIX A 

GAS LUBRICATION EQUATIONS 

In this section the equations for the distributed 

film velocities and the Reynolds equation will be developed 

using spherical coordinates.   These equations form the 

foundation of the viscous theory for gas film lubrication. 

Figure 24 and the compressible forms given in Reference (21) 

for the Navier-Stokes momentum equations, the continuity 

equation and the energy equation are used in this develop- 

ment.  In order to obtain analytical solutions for these 

nonlinear partial differential equations it becomes neces- 

sary to simplify their forms.  This is accomplished in part 

by. using the following assumptions which are characteristic 

of thin gas films: 

1. The gas lubricating film is thin; i.e., h/rB ^ 1. 

2. Gradients in the r (or z) direction, are much 

greater than gradients in the 0 or cp directions 

3. The component of velocity in the r (or z) direc- 

tion is negligible compared to the components 

of velocity in the 9 or (p directions (w' ~ 0). 

The approach is similar to that used by Gross (3) 
for cartesian coordinates. 
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These assumptions along with the assumption of quasi- 

steady flow reduce the momentum and energy equations to the 

following forms: 

Momentum, 

u  9u 
P 

r  90 

1   9p 

r  99 

9u 

r sin 9  9<p 

9z 

(T 
9v 

90 r sin 0  9<p 

9p 

r sin 0  99 9z 

cot 0 1 

9u 1 

9z J 

9v    uv cot 0 
  +   

9v 

9z ■]• 

(A-l) 

•] 
(A-2) 

9z 
~ 0 ; (A-3) 

Energy, 

u  9(c T) 

99 r sin 0 9<p   J 

Note that the momentum equations and the energy 
equation are in the steady flow boundary layer form. 
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u       3p 3p 

r       39 r sin 9       3cp -v —h —1 i: 3z   |_ 9z J 

3v 

az KM']. (A-4) 

where 

r = rB  + z   , 

rR = constant, 

rß > h , and 

0 £ z < h . 

The continuity equation given in Reference (21) may 

be written as: 

3p      1    a                1 
  + (pu Sin e) +   
at r sin 9  39 

3 

r sin 0  3<p 
(pv) 

a 
2 

i:   8z 
(r2pw') = 0 (A-5) 

Although the first and last terms in the above equation are 

negligible according to the assumptions used thus far, they 

have been retained so that the squeeze film effect will be 

included in the Reynolds equation.  This effect is generally 
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small in the case of an externally pressurized bearing, but 

isolated conditions do exist under which it becomes impor- 

tant. 

Equations A-l and A-2 contain both viscous and iner- 

tial effects.  Since only viscous effects are being consid- 

ered, these equations may be reduced even further.  The 

modified Reynolds number, Re , gives a good indication of 

the relative magnitudes of viscous and inertial forces in a 

gas film.  It is an order of magnitude approximation of the 

ratio of interial force per unit volume to viscous force per 

unit volume which is defined here as: 

u       9u PÜ2 

" = P 
üh2 

= P 

P 
r    ae r9 uLs 

92u JiU ^Ls P 

dz' 

Re 

where Lg = r9 is the length of arc.  When Re < 1, the iner- 

tial effects in the lubricating film become negligible when 

compared to the viscous effects and the momentum equations, 

Equations A-l and A-2, reduce to: 

1 

r ae 3z 

8u 

8z 
(A-6) 
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1 6p 

r sin 0       3<p 3z 

3v 

3z ■]• (A-7) 

Equations A-4, A-5, A-6, and A-7 are available for 

obtaining a solution to the problem. Add to this list the 

equation of state for a gas, which is 

p = pftT , (A-8) 

and the number of equations is increased to five. 

In Equation A-3 it is shown that p = p(0,q>).  If the 

thermal gradient across the lubricating film (3T/3z) is 

negligible then p = p{6,<p). This is a valid assumption due 

to the low heat generating capacity of a gas film with 

Re < 1. The viscosity, p., is known to be a function of 

temperature and to depend slightly on pressure; therefore, 

\i  = [1,(9,<p). 

The results of the previous discussion for a thin gas 

film with Re < 1 are: 

T = T(e .9). ■^ 

P = p(e .<?). 

P = p(0 .<p), 

H = ^(e »q>)» 

u = u(e .<P.z), and 

V = v(e ,cp,z). > 

(A-9) 
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The boundary conditions for no slip at the gas 

boundaries are: 

at z = 0, u = 0, v = 0, w1 =0; 

at z = h, u = u. , v=vh» w' =n* 

Assuming that r ä constant, since rß ^ z, Equations 

A-6 and A-7 can be integrated with respect to z to obtain: 

u = 

v = 

 zfz - hi + u. [— 1 , (A-10) 
2^r  ae  L    J   hl  h J 

!L ,[,. „] + Vh[J_] .       (A.n) 
2\LT  sin 0  8<p 

The validity of these Poiseulle-Couette velocity 

profiles is dependent on the applicability of the Navier- 

Stokes equations; i.e., only in regions of small dilation. 

Since the conventional theory of lubrication is based on 

continuum flow with negligible slip and fluid inertia the 

region of applicability is further limited by: 

K < 0.01 , n 

Re* <  1 . 

Transpose Equation A-5, the continuity equation, then 

integrate across the film in the z direction using the 

previous assumption that r ~ constant: 
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(r2ph) 

Xr /-<**>--/[-£ 

8 18 
(pu sin 0) + (pv) 

r sin 9  39 r sin 9  9<p 

Interchanging integration and differentiation: 

(r2ph) h 

dz 

-5-  / d(r2pw») = - / 
ap 
  dz - 
3t 

o 

h 
a 

r sin e ae 

r sin 9  Qy 

I    pu sin 9 dz - 

Substituting Equation A-10 and A-ll into this equa- 

tion, recalling Equation A-9 and performing the indicated 

integrations results in 

1   (     \ a  I" h3p sin 9  3p 1 

12r2 Y sin e   09 L    M-      9^ J 
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r h3p 

sin    6      6<p 
—IV 
a<p \J at 

(ph)  + 

2r s ̂ k^tvH' 
which is the Reynolds equation in spherical coordinates. 

This equation may be nondimensionalized by multiplying 

through by jxVh P2Po 
and letting 

H = 

P = 

T  = 
CO 

U = 

P2 

cot , 

u. 

V = 

r = , and 
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£2 = 

^2 

which yields 

esc 0 

rH3r 

39 
sin 0 

9P 

90 
+ esc 6 

a I" H3r T ap 

A  fa 

:in 0 \dd 

a     i   a 
(UfH sin 9) +   (VTH)> + ö (HO , 

dtp ■ aT 

dcp I  Q   3(p 

CO 

(A-12) 

where the compressibility number A and the squeeze number a 

are defined as 

A = 
6^2

rvr 
2 ' 

h>2 

12ji«r (o 
cf =  ^  

h>2 

The unknowns in Equation A-12 are p, p, |x, and h. 

The radial clearance, h, will either be assumed constant or 

a variation with 0 and 9 specified.  The Reynolds equation, 

Equation A-12 and the energy equation, Equation A-4, are 

coupled due to the unknown dependency of p and \L  on p and T. 

In order to obtain the pressure profile for compressible 
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flow it is necessary to solve these equations simultaneously. 

Such solutions are difficult to obtain as they require 

numerical methods. 

It is well known that the viscosity |j, is comparatively 

insensitive to small changes in temperature and only slightly 

affected by pressure; therefore, for most gas lubricating 

films fi may be considered constant.  If it is assumed that 

the gas expands polytropically as did Comolet (15), the 

energy equation may be replaced by the approximation, 

1 
n 

= K 

If 

K = 

1 
n 

P2 
p2 

this relation becomes 

1 

r = pn . 

Substituting this nondimensional relation into Equa- 

tion A-12, 

esc 6  a 

Q 86 
JH

3
 sin 6 Pn — 
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esc 9  8 
H3Pn   
L     3«P 

3<p 
(vpnHn 

3<p 

a 

A  fa   I 
 <  (UPnH 
iin G l^ae 

sin 9) 

+ a 
3T 

(PnH) . (A-13) 

CO 

This equation will yield only approximate pressure profiles 

due to the polytropic flow approximation. 

Grinnell (22) solved the momentum and energy equa- 

tions simultaneously to obtain a solution for the longitu- 

dinal gas flow between parallel walls.  Huges, in a discus- 

sion of this paper, observed that the temperature remained 

constant in the adiabatic parallel surface film.  The 

isothermal condition has been verified through experimental 

evidence by Grinnel (22), Comolet (15), and many other 

authors for both longitudinal and radial flow. 

For isothermal conditions the Reynolds Equation 

becomes: 

esc 9      a 

a 

8    fa  HJ sin 
39   L 

A      fa 

an 9 |^ae 

9P 
9  P 

39  J 

esc e     a 

Q d<p 
H3P 

ap 

3<p •] 
3 3 13 

(UPH sin 9)   +  (VPH))+tf (PH) . 
3<p '} 3T 

(£> 

(A-14) 
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This nonlinear partial differential equation is the basis of 

the viscous lubrication theory in spherical coordinates.  It 

may be simplified for given bearing configurations by using 

arguments of symmetry and by placing restrictions on the 

relative surface motion of the bearing.  Such restrictions 

have been used in Chapter III. 

107 



APPENDIX B 

MODIFIED JOURNAL BEARING 

The restrictor of the journal bearing shown in Figure 

1, page 2, was modified according to the results obtained in 

the previous investigation to inherent compensating without 

a pool.  This was accomplished, as shown in Figure 25, by 

counterboring the flat areas of each bearing pad surface and 

installing threaded plugs. These plugs were successfully 

lapped into the spherical contour without disturbing the 

remaining bearing surface.  Inherent restrictors 0.025 

inches in diameter were used in this bearing. 

The modified journal bearing was loaded in the axial 

direction and the results are presented in Figure 26, page 

109, The two theoretical load capacity curves presented in 

this figure were obtained through the use of the simplified 

journal bearing model and pad load characteristics for 

either variable radial clearance (Equation 31) or constant 

radial clearance (Equation 32). The experimentally deter- 

mined journal bearing load characteristics agree well with 

theoretical predictions for variable radial clearance. This 

is to be expected since the journal bearing is deflecting in 

excess of 80 per cent of the large zero load constant radial 

celarance (c - 0.0015 inches).  The load reducing effects of 
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Figure 25.  Modified journal bearing 
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Figure 26.  Modified journal bearing performance under 
an axial load. 

110 



large eccentricity ratios are demonstrated in this figure by 

the difference in the theoretical values for constant and 

variable radial clearance.  Using h = 0.0003 inches as the 

minimum radial clearance, the maximum load carrying capacity 

of the bearing in the axial direction is 160 pounds when 

nitrogen is used.  Helium is shown to yield a significant 

increase in load carrying capacity over nitrogen; however, 

it is not practical to use it due to its high cost caused by 

nonrecovery. ~"  

The results presented in Figure 27 were obtained by 

loading the journal bearing in a direction normal to its 

axis of symmetry.  When loaded in this manner there is no 

symmetry in the lubricating film over the pads.  For this 

case the film can be thought of as having eccentricities in 

two orthogonal directions. Comparing the results for the 

axial loading given in Figure 26, page 109, and those for 

the normal loading given in Figure 27 it is shown that in 

general this complicated film geometry causes a reduction in 

load capacity. As shown in Figure 27 the minimum load 

capacity occurs when the load vector passes between two pads. 

Using h = 0.0003 inches as the minimum allowable radial 

clearance, the maximum load carrying capacity of the bearing 

in the normal direction is 100 pounds when nitrogen is used. 

Here again helium yields a substantial increase in load 

carrying capacity. 
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Figure 27. Modified journal bearing performance under 
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